
J Math Chem (2008) 44:228–234
DOI 10.1007/s10910-007-9305-z

ORIGINAL PAPER

A quantum similarity matrix (QSM) Aufbau procedure

Ramon Carbó-Dorca

Received: 15 February 2007 / Accepted: 10 July 2007 / Published online: 21 September 2007
© Springer Science+Business Media, LLC 2007

Abstract An Aufbau recursive algorithm, leading to the construction of molecu-
lar Quantum similarity matrices (QSM) with positive definite structure is described.
As a consequence, Molecular Quantum Similarity measures optimization has to be
restricted by a recursive constraint, related to the Euclidian norm of the QSM column
elements in Quantum Object density tag reciprocal space.

Keywords Quantum similarity · Quantum similarity matrices · Quantum similarity
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Introduction

Suppose a known given Quantum Object Set (QOS) [1] formed by N molecules, with
density tags described as: {ρI (r)}. The usual procedure for constructing the symmet-
ric (N × N ) Quantum Similarity Matrix (QSM), Z = {zIJ}, using overlap similarity
measures, for example, has been described as [2]:

∀I > J : zIJ = 〈ρI ρJ 〉 =
∫

D
ρI (r) ρJ (r) dr = zJI , (1)

However, as it is well know since the first paper on the subject [3] the set of quantum
similarity measures {zIJ} depend on the relative position in 3D space of the implied
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Quantum Objects (QOs). As the QO density function labels are positive definite
functions, the integrals of type (1) can be considered as measures; thus, they are
positive definite too. Since now the usual procedure to construct the QSM has been to
maximize each of the integrals of type (1) with respect the translations and rotations
of one of the implied QO with respect to the other. This can be expressed formally,
for instance, as:

∀I > J : zIJ = max
t;Ω

∫
D

ρI (r) ρJ (r |t;Ω ) dr (2)

where the pairs: {t;Ω} are translations and rotations respectively, performed on the
center of coordinates of the J -th QO [4]. It is irrelevant which one of the QO pair
is chosen in order to optimize the integral (1) by means of the algorithm (2), the
same result shall be obtained choosing the I -th QO for undertaking translations and
rotations.

Apparently, such a procedure, repeated for every non redundant couple of QO’s,
shall provide a QSM Z with appropriate characteristics [5] associated to a metric
matrix. The most important one consists into that the attached QSM has the property
to be positive definite; as the density tag set is linearly independent, if the QOS is
made of different QOs, then Z has to be a metric matrix of a pre-Hilbert space [6].
However, in many cases the use of algorithm (2) does not provide a QSM whose whole
spectrum is positive definite, but a small amount of the Z eigenvalues may appear to be
negative. This non-definite behavior of the metric matrix Z can be attributed to the fact
that following algorithm (2), when facing the J -th QO to the rest of the QOS elements,
then for every distinct QO a different relative position of the J -th QO is found, while
reaching the optimal value of the similarity measure (1) for every pair of QOs; that is:
the relative position of the J -th QO with respect to the I -th QO, ∀I : J �= I , in order
to optimize every element zIJ , becomes different, and therefore when optimizing Eq.
2 one will obtain a set of different optimal translations-rotations: {tI ;ΩI } ∀I �= J .

When computing any optimal quantum similarity measure by means of algorithm
(2), one also must be aware that the final result, can be used to construct the symmetric
(2× 2) matrix:

ZIJ =
(

zII z IJ

z JI z JJ

)
∧ zIJ = z JI , (3)

and also has to provide at least a positive definite matrix (3), which is the same as to
consider the following property has to be fulfilled:

Det
∣∣ZIJ

∣∣ = zII zJJ − z2
IJ > 0→ zII zJJ > z2

IJ . (4)

The restriction (4) can also be written as:

zJJ > z2
IJ z−1

II , (5)

and this will provide a form of the (2× 2) positive definite restrictions to be easily
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related to the general analysis which follows. Therefore, the algorithm (2) has to be
modified accordingly incorporating the inequality (4) as a restriction:

∀I > J : zIJ = max
t;Ω

∫
D

ρI (r) ρJ (r |t;Ω ) dr ∧ z2
IJ < zII zJJ (6)

and one can expect that the general QSM Z, can approach in this way the required
complete positive definiteness, although this cannot be completely assured. In fact,
this (2× 2) restrictions constitute an incomplete point of view, as nothing can be said
about the positive definiteness of higher the dimensional submatrices of the QSM Z.
In this sense, the restricted algorithm (6) is more or less similar to the triangle distance
relationship coherence, sought by an already published procedure [7].

Gershgorin circles and positive definiteness of QSM

In general, the positive definiteness of the similarity matrices of QSM type Z could
be assessed by means of the Gershgorin theorem, see for more details reference [8].
Indeed, the QSM: Z = {zIJ} are strictly positive, that is it can be written:

Z∗ > 0→ ∀zIJ ∈ R+;

thus, the attached Gershgorin circles become intervals in the real line {�I }, defined by
means of the Gershgorin radius:

∀I : rI =
∑
J �=I

z IJ → �I = zII ± rI (7)

and then all the eigenvalues, the spectrum: Sp [Z], of the QSM must be included within
the union of the intervals (7). Therefore, defining the upper and lower bounds of each
Gershgorin interval as:

∀I : �+I = zII + rI ∧ �−I = zII − rI

respectively. Then within a coarse rule, it can be said that the spectrum of the similar-
ity matrix shall be necessarily contained into the line segment defined by the extreme
values of the Gershgorin intervals:

Sp [Z] ⊂
(

min
I

{
�−I

} ; max
I

{
�+I

})
.

Because of this inclusion due to Gershgorin theorem, a QSM is positive definite:
Z > 0, if the lower Gershgorin limit is positive:

min
I

{
�−I

} ∈ R+ → Sp [Z] ⊂ R+ → Z > 0.
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This will be equivalent to say that whenever a QSM is diagonally dominant it is also
positive definite [8], that is:

∀I : zII > rI → ∀I : zII − rI ∈ R+ → min
I

{
�−I

}
∈ R+ → Sp [Z] ⊂ R+ → Z > 0. (8)

This last property becomes a straightforward test to perform on QSM, as a result of
the test, if the matrix diagonal dominance is fulfilled it can be assured that: Z > 0.
However, the QSM are usually not diagonally dominant, although they still are positive
definite if properly constructed.

The quantum similarity matrix Aufbau recursive algorithm

Although one can use the Gershgorin theorem to test the positive definiteness of any
QSM, a complete QSM calculation algorithm, based on the generalization of property
(5) for (2× 2) matrices, in order to assure the QSM Z positive definiteness, shall be
based in an aufbau manner; that is: starting from any pair of QO, algorithm (6) is put
forward. The result will be a positive definite matrix, Z0 say, with a structure like the
matrix (3) above defined. A simple recursive aufbau algorithm can be described in
order to obtain a final positive definite QSM.

Suppose that for some index P < N , a (P × P) positive definite QSM Z0 has
been obtained, using the QOs sequence:{IK ; K = 1, P}. One can add a new QO to
the aufbau procedure, the Q-th QO, say, in such a way that an augmented QSM, Z1,
is obtained possessing the partitioned structure:

Z1 =
(

Z0 |z〉
〈z| θ

)
,

with the (1× P) row vector defined as: 〈z| = (
zI1 Q; zI2 Q; . . . zIP Q

)
, and the column

vector |z〉, being just the transpose of the former; finally, θ ≡ zQQ is the selfsimilarity
of the added QO.

The sufficient relationship (8), which can be written here as the set of conditions:

θ > 〈|z〉〉 ∧ ∀K = 1, P : zIK IK >
∑
L �=K

zIK IL+zIK Q, (9)

assuring that the augmented matrix Z1 has a positive definite structure, can be alter-
natively rewritten via a recursive Cholesky decomposition algorithm, described in
several places [9].

The necessary and sufficient condition for the positive definiteness of the augmented
QSM Z1 can be stated as:

θ − 〈z|Z−1
0 |z〉 > 0→ zQQ >

∑
K

∑
L

zIK QzIL Q Z (−1)
0;IK IL

. (10)
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The Cholesky decomposition condition, which can be called Quantum Similarity
Aufbau Condition (QSAC), means that it cannot be reliable to use a pair of QOs
every time that a new element of the QSM has to be computed, but that the added
QO density function: ρQ (r |t;Ω ) has to be translated-rotated with the same values of
the pair: {t;Ω}, for every computed element of the vector |z〉, connecting recursively
the QO Q with all the ones previously employed in constructing the QS submatrix
Z0. When the QS submatrix Z0 has scalar (1× 1) dimension as occurs in the subma-
trix (3) case, then the QSAC (10) becomes the relationship (5). Moreover the QSAC
condition is a stronger positive definiteness condition than the diagonal dominance,
as QSAC becomes the necessary and sufficient condition for constructing a positive
definite augmented matrix.

The maximal pair condition (2) can be substituted in the general (P × P) case, for
instance, by maximizing the sum of the whole vector|z〉, which due to the positive
definiteness of its elements is coincident with the search of a maximal Minkowski
norm:

max
t;Ω

[〈|z〉〉] = max
t;Ω

[
P∑

K=1

∫
D

ρIK (r) ρQ (r |t;Ω )dr

]
= max

t;Ω

[
P∑

K=1

zIK Q

]
. (11)

This can be done admitting the same translation–rotation sequence performed on every
term of the vector |z〉 in Eq. 11, whenever such transformation increases the Minkowski
norm.

However, while the maximal value of the sum leading to the Gershgorin radius is
searched as in the condition (11) of the previous sentence, the QSAC relationship (10)
has to be equally tested and if not fulfilled the pair {t;Ω} rejected.

Such a procedure will assure the positive definiteness of the QSM Z at the final
step of the recursion and will provide the same relative position in the calculation of
the quantum similarity measures for every recursively added QO.

Geometrical interpretation of the QSAC

Leaving apart the linear algebra concept of diagonal dominance, expressed as equation
(8), which similarity matrices usually do not fulfill, the alternative Cholesky decom-
position condition property leading to the QSAC, assuring in this manner the positive
definite structure of the final QSM form and written as in equation (10), has a clear
geometrical meaning. The positive definite quadratic form:〈z|Z−1

0 |z〉 ∈ R+, is noth-
ing else than the Euclidian norm of the vector |z〉 in the reciprocal metric space defined
by the density tags:

{
ρIK (r) ; K = 1, P

}
. The QOs tags are employed to form the QSM

Z0, which because of the QSAC construction has been structured positive definite and
acts accordingly as a metric matrix of a P-dimensional pre-Hilbert space. Since in the
quadratic form appearing in equation (10), the inverse of the metric Z0 appears, the
implicit Euclidian norm equivalent to the aforementioned quadratic form is computed
in the metric reciprocal space with the matrix Z−1

0 , acting as a positive definite metric

matrix, because: Sp [Z0] ∈ R+ → Sp
[
Z−1

0

]
∈ R+. Accordingly, the QSAC forces
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this Euclidian norm in the reciprocal P-dimensional pre-Hilbert space to be less than
the self-similarity of the recursively added Q-th QO.

This permits to associate the described Quantum Similarity Aufbau procedure as an
algorithm maximizing the Minkowski norm of each recursive column |z〉 of the QSM,
submitted to the QSAC restriction consisting in that its Euclidian norm, computed
in the recursive reciprocal pre-Hilbert space, remains less than the recursive QSM
diagonal self-similarity elements.

Final remarks

1) Due that it is not necessary to start the recursive QSAC with any a priori cho-
sen QO, the final QSM will certainly depend on the QO recursive order chosen.
Thus, there are just N ! possible choices, producing each one an equally positive
definite QSM. However, the ordering imposed by the self-similarity measures
can be chosen as a way to reach a systematic QSM Aufbau. That is, if one calls
the QSM diagonal selfsimilarity measures set computed on the QOS elements:
D (Z) = {zII }, then the obvious choices are defined by the maximal ordering:

z11 = max
I

[D (Z)]→ z22 = max
I

[D (Z)− z11] ...

or by the minimal:

z11 = min
I

[D (Z)]→ z22 = min
I

[D (Z)− z11] ...

This ensures that the QOs will be ordered in decreasing or increasing complexity,
while providing with a generic reproducible way of computing QSM under QSAC
premises.

2) When constructing the QSM according to the proposed Aufbau procedure, it is
well known that the overlap quantum similarity measures, as defined in Eq. (1),
can be substituted by a more general form [10], involving a positive definite
operator: �(r1; r2); so, in general, the similarity measures can be described as
the integral:

zIJ (�) =
∫ ∫

D
ρI (r1) � (r1; r2) ρJ (r2) dr1dr2;

while the positive definite operator choice ensures that the QSM, when con-
structed according the equivalent QSAC, like the one depicted previously for
overlap quantum similarity measures in Eq. (10), is positive definite. One just
shall make the substitution: zIJ ← zIJ (�).

3) The QSAC is also valid for quantum similarity measures involving the off-
diagonal terms of the density matrix [11].
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Conclusions

An Aufbau procedure subject to a so called Quantum Similarity Aufbau Condition
(QSAC) in order to construct positive definite QSM has been described. It consists in
the maximization of the Minkowski norm of the recursively constructed QSM columns,
while keeping the Cholesky decomposition diagonal elements real, as a restriction.
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